HISTORICAL NOTES
National Treasure Discovered in a Shoebox

LOOKING AT REALITY
Daguerreian Pictures. From Silver to Paper

MEET THE COLLECTOR
Colour and the Daguerreotype

THE DAGUERREOTYPE STUDIO
Baron Séguier’s Daguerreotype Equipment
TABLE OF CONTENTS

4 EDITORIAL

6 EUROPEAN DAGUERREOTYPE ASSOCIATION

9 NOTES FOR YOUR DIARY
2014 The Daguerrian Society Symposium

10 CURRENT RESEARCH
If the Sky is Falling?
by Keith F. Davis

12 MEET THE COLLECTOR
Colour and the Daguerreotype
by Michael G. Jacob

20 HISTORICAL NOTES
National Treasure Discovered in a Shoebox
by Włodek Witek

30 LOOKING AT REALITY
Daguerreian Pictures. From Silver to Paper
by Maria Francesca Bonetti

44 THE DAGUERREOTYPE STUDIO
Baron Séguier’s Daguerreotype Equipment
by Nicholas Burnett

56 ON THE MATERIALITY OF IMAGES
How to Protect a Daguerreotype?
by Herman Maes

DAGUERREOTYPE journal
QUARTERLY ISSUE N.O

daguerreotype.journal@gmail.com
www.daguerreobase.org
FB /Daguerreobase

PUBLISHER
EDA, European Daguerreotype Association
for the Daguerreobase Project

EDITOR
Sandra Maria Petrillo for
the
Daguerreobase Project

GRAPHIC DESIGNER
Giulia Agostinelli

TRANSLATION
The article Daguerreian Pictures. From Silver to Paper
was translated by Tristam Bruce

THANKS TO
Michael G. Jacob, adviser for Issue N.0

Send your proposal for the next Issue to
daguerreotype.journal@gmail.com

DAGUERREOTYPE JOURNAL © June 2014, All Rights Reserved
For Permission to reproduce articles and images published in this journal,
please contact daguerreotype.journal@gmail.com

The DAGUERREOTYPE JOURNAL is produced in the context of the Daguerreobase Project

“This project is partially funded under the ICT Policy Support Programme (ICT PSP) as part of
the competitiveness and Innovation Framework Programme by the European Community”
http://ec.europa.eu/ict_psp
Sharing the International Cultural and Visual Heritage of Daguerreotypes

More than any other type of photographic image, from the moment of their invention, daguerreotypes were widely perceived as perfect reflections of reality. Daguerreotypes learned people to see the world photographically for the very first time, and still today we often regard them with a similar sense of wonder.

We are attracted by their captivating beauty and their extraordinary high definition that make them almost seem to be magical windows, opening up a vista directly into our past. Thus they appear to be “time capsules”, in the words of one enthusiastic collector.

Universal recognition of daguerreotypes as unique and valuable artefacts has made it urgently necessary not only to preserve them from the ravages of time but also to explore and develop more thoroughly the great range and variety of cultural studies that these images can offer us today.

The desire to share our passion for the daguerreotype was the main motivation for founding this free online publication, which is dedicated to words and images concerning the aesthetics, the science, the history and the art of creating daguerreotype images, in the past as well as now. We very much hope that you will enjoy it!

We wish to thank the European Union for their important financial contribution to the Daguerreotype Journal, a publication that has been launched in connection with the Daguerreobase Project.

To view a selection of daguerreotype pictures that are currently conserved in various important European public institutions and private collections please click on the following link:

www.daguerreobase.org
The European Daguerreotype Association (EDA) Has Been Founded!

The European Daguerreotype Association, or EDA, is an international non-profit association of photography enthusiasts, with a special interest in the history and the art of the daguerreotype. The EDA intends to deal with the expansion and maintenance of Daguerreobase, an active EU-financed database that will contain over 25,000 descriptions of daguerreotypes in public and private European collections. We will work on aggregation of new information on the early history of photography, enrichment of existing descriptions of daguerreotypes in public and private collections and linking with other collections, museums, institutes and collectors. Our aim is to build an authentic source for 19th century European photography heritage research.

The EDA will encourage the study of the art of daguerreotype, including the preservation and conservation of original daguerreotype plates, and its relation with other techniques of 19th century photography. We will offer access to a constantly growing worldwide network of curators, conservators, museums, teachers, specialists, collectors and private owners.

We will share our knowledge regarding the techniques and practise of early photography, in addition to the various aspects of its use as an expressive medium, and we intend to become a strong and interactive community. The partners of the EDA have already proposed organizing workshops, as well as offering their expert assistance and advice regarding publications, the maintenance of collections, education and teaching. Last but not least, we will organise conferences, meetings and a special annual symposium or excursion to various different locations all over Europe. EDA is now planning its first international meeting in 2015 in Bry-sur-Marne near Paris, which was the last residence of Louis Daguerre.

After the completion of the “Daguerreobase” project we wish to make sure that this unique database will be easily accessible and constantly expanding as a unique source of primary information, as well as to create a large international community of people who are passionate of the daguerreotype. We therefore wish to invite you to become a member of our community, to share our common interests, and to build with us a long-lasting European Daguerreotype Association! If you wish to share your enthusiasm for the Daguerreotype by supporting this project you too can now become a member of the “European Daguerreotype Association”!

The European Daguerreotype Association has been founded according to Belgian law as a 100% non-profit organisation, or “Vereniging zonder winstoogmerk” (VZW). Gifts or donations are accepted and appreciated, but we are not registered for tax purposes.

EDA BOARD
ANN DECKERS, President
HANS GUUMERSBACH, Vice President
WOUTER LAMBRCHTS, Secretary
HERMAN MAES, Treasurer
AGNES WIJERS, Member

THE BOARD OF EDA INVITES YOU TO BECOME A MEMBER!
Please contact us at: membership@daguerreobase.org or complete the application form on daguerreobase

Institutional Member € 100
Private / Individual Member € 50
Student Member € 25

Membership fees are payable on a yearly basis.
KEITH F. DAVIS is the senior curator of photography at the Nelson-Atkins Museum of Art in Kansas City, Missouri. Since 1979 he has curated some 80 exhibitions, many of which have travelled to important museums in the United States and internationally. In addition to teaching and lecturing widely on the history of photography, he is the author of nearly twenty catalogues and books. More Info

MICHAEL JACOB has been collecting daguerreotypes for 35 years. He is the author of Il Dagherrotipo a Colori (Firenze, Nardini Editore, 1992) and Colour and the Daguerreotype: “The Great Problem is Fairly Solved…” (Pittsburgh, Daguerreian Society Annual, 1997). Michael and his wife, Daniela De Gregorio, write crime fiction together under the pen-name of Michael Gregorio. Their novels include Critique of Criminal Reason and A Visible Darkness. More Info

WLODEK WITEK has been working on the conservation of paper and photographs for over 25 years. He has catalogued the Fridtjof Nansen collection of photographs as well as the Morgenstierne multimedia archive for the Library of the University of Oslo. He now works as a paper and photograph conservator at the National Library of Norway. He is one of the very few practicing calotypists in the present day. More Info

MARIA FRANCESCA BONETTI is an art historian employed at the Ministry of Culture in Italy and since 1999 she has been the curator of the department of photography at the Istituto Nazionale per la Grafica in Rome. She has contributed to the definition and diffusion of various guidelines and methodologies for the management and cataloguing of photographs. She has curated various contemporary and historical photography exhibitions and has edited numerous catalogues. More Info

NICHOLAS BURNETT is an experienced and accredited conservator of photographs and works of art on paper. He is currently the director of Museum Conservation Services Ltd, a company working for museums, historic houses, art galleries and private individuals. He has thirty years of experience working in the field of museums as well as the private sector. More Info

HERMAN MAES is senior photographic materials conservator and head of the conservation department of the Netherlands Photo Museum of Rotterdam. He is visiting lecturer at the University of Leiden, where he teaches historical photographic and photomechanical techniques, and he frequently holds workshops on the conservation and preservation of photographs. More Info

The 2014 Daguerreian Society Symposium will be held in Austin, Texas on September 26-29. An initial agenda for the Symposium is available, and more detail will be made available on the web site as additional plans are confirmed. The Texas State Library and Archives will provide the venue for our reception on Friday.

THE DAGUERREIAN SOCIETY

The Society was created by collectors inspired by the magic of the daguerreotype and the early history of photography to the period just after the Civil War. This association has a rich 25-year history of research and scholarship regarding the social and cultural influence of photography during the Daguerreian era. Initially founded as a collector’s organization, the Daguerreian Society has evolved to a coalition of interest parties that includes libraries, museums, historical associations and academic researchers.

While strongly influenced by the Daguerreotype, the Society strives to address the full range of early photographic processes. To help align the interests of our members, the Society has formally expanded its mission to reflect its focus on the evolution and impact of photography during the entire Daguerreian era. The art, science, and social and cultural impact of photography in the mid-19th century has been of primary interest to the Society and as a result, collectors and institutions have studied the relevant processes and formats that evolved during the Daguerreian Era.

In addition to the daguerreotype (for which the Society was originally named) are the interconnected impacts of invention and development of photography processes including calotypes and early paper processes, cyanotypes, amphitotypes, tintypes, cartes-de-visites, stereographs, early cabinet cards, and the myriad of experimental techniques that developed during this time. In addition to studying the daguerreotype and impact of early photographic processes, the Society addresses issues ranging from research regarding individual images and collections, to understanding the technical and creative processes, and conservation of historic images in terms of care, treatment, storage and exhibition. Society members include contemporary Daguerreian creators as well as collectors and academics studying the aesthetic, social and cultural impacts of early photography.

The Society hosts an annual symposium with presentations on emerging research and photographic history in addition to its trade show and tours of collections. Publications include a Quarterly and Annual, typically including over 300 pages of original articles by researchers, collectors and institutions.

Responses to a recent call for papers included broad communities of scholars in American studies, photographic and art history, conservation and related topics. In addition the recent call has begun efforts to provide peer review for publications of the Society, increasing its potential impact in academic and museum communities.

FOR ADDITIONAL INFORMATION CONTACT:
Jeremy Rowe
Jeremy.rowe@asu.edu or Diane Filippi
diane_dagsoc@comcast.net or visit www.daguerre.org

Jeremy Rowe, President of The Daguerreian Society
**To Show or not to Show Daguerreotypes?**

Today, more than ever before, daguerreotypes are recognised as being a “unique and irreplaceable” part of the world’s cultural heritage. The past few years were rich with new research in the field of their preservation and conservation and currently special attention is given to safe methods of displaying and exhibiting these precious images.

The Winter 2013 issue of The Daguerreian Society Quarterly (September-December) published an editorial by Keith F. Davis, Senior Curator of Photography at the Nelson-Atkins Museum titled “Is the Sky Falling?” inspired by the well known case of the Young America Daguerreotypes of Southworth & Hawes exhibition, organized in 2005 by the George Eastman House and the International Center of Photography.

Exhibition catalogue

The Daguerreian Society has agreed to share this article and other relevant publications with our journal, and we are planning to reciprocate to inspire a broader discussion that will also involve European institutions, curators and conservators.

**If the Sky is Falling?**

*by Keith F. Davis, The Nelson-Atkins Museum of Art, Kansas City - Missouri*

Daguerreotypes have been “in the news” the last year or two, but in ways that have become increasingly worrisome. We are concerned about both the logic and the scope of the claims, or warnings, that have been made about the potential “light sensitivity” of daguerreotypes and thus, the danger of exhibiting them. This is an issue of huge importance to institutions that have and/or desire to show daguerreotypes. We aim to observe the highest of professional standards, but this concern seems unsupported to us by actual experience and evidence. Some of these media reports border an apocalyptic. Under headlines such as “A Vanishing Past?”, and “Scientists Attempt to Save Disintegrating Artworks” we are told that “daguerreotypes...may be deteriorating before your eyes. No one knows exactly why, or how to save them”. Despite the qualifications and question marks, much of this reporting strikes us as extreme and misleading.

As we know, the core problem here is real, but very specific. In the 2005-2006 Southworth & Hawes exhibition “Young America”, some daguerreotypes exhibited visible and rapid deterioration while on display. Of the show’s 160 plates, 5 changed dramatically and another 25 slightly. Most of these changes involved a “disfiguring bloom or white haze” that developed in the exhibit’s first month. Initially, at least, a professional consensus formed around the presumption that, over the course of their history, the plates have been exposed to sodium chloride. This chemical on reaction to the silver surface, formed light-sensitive silver chloride compounds that then printed-out under exposure of light.

Since the 2005-2006 exhibit, research has moved in various directions, including new attention to the nano-structure of the daguerreotype plate, the presence of organic materials on the surface, the effect of exposing plates to very high-energy UV radiation, and the possibility of contaminants from modern materials used to protect these formerly uncased plates. It has been suggested that environmental conditions alone, without exposure to light, could also produce the disfiguring white haze. At present, work continues on several fronts, but without definitive answers. We have enormous respect for both the seriousness of the original issue and the talents of all those now involved in research. However, we are unhappy that the fields remains in a sort of conceptual limbo: dire warnings have been made, but little or no new information of practical value has been generated.

The key problem now is one of clarity of definition. The original “Southworth & Hawes problem” has been inflated by some into a vastly larger and, in our view, entirely speculative “daguerreotype problem”. This sweeping generalization is problematic. To our knowledge, all of the plates that have ever changed rapidly on exhibition were by Southworth & Hawes. Most importantly, they shared a common provenance history: all had been stored together, for many decades, in the legendary S&H Studio Collection. To date, we have not seen a single documented instance of any non-S&H plate, or, more precisely, any non-S&H Studio Collection plate, showing signs of light-sensitivity in the course of exhibition.

Logically it is impossible to prove a negative. If we are asked “Can you prove that all daguerreotypes are not potentially light-sensitive?” we must answer “no”. But, that isn’t a productive question: it can only lead to paralysis. Instead the practical question is something like this: “Is it legitimate to generalize our concern over the S&H problem to all daguerreotypes?”. The logical response here should be “Only if we have actual evidence that the problem is generic.”

As it happens, the data for that determination is everywhere around us, in the sum of all other daguerreotype exhibitions in our lifetimes. The changes in 2005 to the S&H plates in question were rapid and (in five instances) dramatic. The key question here is this: has any other comparable deterioration been seen in non S&H Studio Collection Plates in any of these numerous other exhibitions? The fact of these past shows, and the condition of all the included daguerreotypes, is of critical and central importance to this “generalisation” issue.

The collection of the Nelson-Atkins Museum of Art (formerly Hallmark Photographic Collection) has been active enough to yield a significant number of “test cases”. A handful of these plates were exhibited in 1995; these and many more were then included in major shows in 2001, 2003, 2007, and 2013 - as well as in the on-going collection rotations, since mid-2007, in the NAMa photography galleries. In all cases, exhibit illumination conformed to generally accepted levels. A highly technical monitoring protocol was not in place to evaluate these plates on a before - and after basis (and this remains a practical challenge). However, an important lesson of the 2005 S&H case is that if such changes were going to happen, they would have happened quickly and they would be obvious to naked eye. We have seen no such changes in any of our plates - S&H and non S&H, alike - as a result of our exhibition history. And in informal conversation with other curators and conservators, we have not been told of any documented 2005-type changes at other institutions. These facts carry significant weight. This lack of hard evidence for any non-S&H light-induced deterioration suggests strongly that what was seen in 2005 is not a general “daguerreotype” problem at all. Rather, it is specific to a single set of plates with a unique, shared history of processing, handling and storage. Lacking evidence to the contrary, we emphasize the importance of stressing this narrative - the facts we firmly know to be true - rather than encouraging, or allowing, others to make far more dramatic but unproven suggestions.
Imagine a world in black and white
To our eyes, something would obviously be missing
Colour
And the Daguerreotype

Imagine a world in black and white
To our eyes, something would obviously be missing

Daguerre’s marvellous invention captured an infinite range of greys from black to white. In terms of accuracy, the daguerreotype was a step ahead of all previous forms of artistic representation (paintings, drawings and the engravings which derived from them), but the colours of Nature were absent, as Daguerre himself recognised. In his manual of 1839, he describes how to obtain “la reproduction spontanée des images de la nature recues dans la chambre noire, non avec leur couleurs...” And yet, there was one exception to this observation.

If the silver plate was over-exposed to the fumes of mercury during development, pure white would turn to ‘impure’ blue. This effect was known as solarisation. It was a chemical accident which had nothing to do with the colours of Nature, but the unwanted appearance of blue may have accentuated the absence of all the other colours on the daguerreotype plate.

As Richard Beard wrote in 1843, just four years after Daguerre’s invention was announced: “It was COLOUR that was wanting to crown all the other improvements and give perfection to the whole”.

The ‘other improvements’ included chemical acceleration of the process with halogens (chlorine, bromine, iodine), better lenses, smaller cameras and smaller plates, all of which reduced exposure times from minutes to seconds by 1842.

In this fine Italian example [III. 2, 2a] dated 12.5.1842, all the elements of the presentation—the brown leather case, the gold leaf decorations, the royal blue backing paper and the floral dedication in coloured ink—serve to remind us that this portrait is without colour. It may be beautiful, and it may be accurate, but it is not natural.

METHODS OF COLOURING

Richard Beard secured the exclusive right to use the daguerreotype process in England in June 1841 and as the official “patentee”, he soon set up daguerreotype portrait studios in London and elsewhere, using an American speculum camera made by J. Johnson & A. Wolcott for which he had already obtained the exclusive use in England in June, 1840. Beard cornered the daguerreotype market in England (with the sole exception of Antoine Claudet, a Frenchman living in London, who had bought a license directly from Daguerre), but he soon realised that the lack of colour was a major setback to his rapidly expanding portrait business, and he set out to remedy the omission. In the British Patent 9292 of March 10th 1842, entitled Colouring Daguerreotype Pictures, Richard Beard described three principal methods of colouring daguerreotypes and he claimed them all as his own, though they were, in fact, already in widespread use throughout Europe and America:

a) the Johann Baptist Isenring method, which involved the use of paper masks to isolate areas on which one or more transparent colours mixed with gum could be laid on the surface of the silver plate in the form of a fine powder;

b) the Chevalier method, which applied either transparent or opaque colours to the inside of the glass which covered and protected the fragile daguerreotype plate;

c) the direct application of pigments— notably gold—directly onto the silver plate by means of a fine brush or ‘pencil’ after the introduction of gold-toning.
pigment mixed with adhesive gum in powdered form by masking off the parts of the picture which would not be coloured. When enough pigment had settled on the plate, the colour was fixed in place by breathing on the plate. Illustration 3 is an early example from an unidentified British studio, which appears to have been made with a mask, allowing the deposition of a dense blue pigment on the surface of the plate. In addition, the young woman’s eyes have been tinted blue, probably with a fine brush.

Illustrations 3, 3a and 3b. Young woman profile in a blue dress, 1842 - 43. Collection Michael G. Jacob

The oval quarter-plate daguerreotype [Ill. 4] has been extensively coloured with both transparent and opaque pigments. In particular, wet gold paint has been used skilfully to form the shadows of the chair back, and to sketch in the pattern of the tablecloth. Chemical solarisation has also added a delicate shade of blue to the sitter’s bright white bodice, while the blue sky may have been solarised on purpose. The clouds are painted in opaque white pigment mixed with sweet, sticky wine, a method attributed to Antoine Claudet.

Transparent colours allowed the underlying photographic details to be seen, while opaque colours, especially gold, were applied wet and obscured the details as they dried out and set hard on the plate. In both cases, a fixative such as gum Arabic was mixed with the pigment. When a tinted plate is turned to its negative plane beneath a source of light, areas treated with wet paint will be opaque, while transparent colours will
‘cloud’ the surface without obscuring the photographic details. Illustration 5, 5a and 5b has also been lightly tinted with a mixture of transparent and opaque colours. In addition, a “nosegay” or sprig of flowers has been painted onto the underside of the cover-glass, using the method mentioned by Charles Chevalier in his manual of 1841. The detail is not photographic, and was added, perhaps on request, or else at the whim of the colourist. We have no idea of the young man’s true complexion, although his ruddy cheeks appears to be freckled beneath a light dusting of dry-applied rouge.

THE DEMISE OF THE MINIATURE
Many painters of miniature portraits turned their hand to daguerreotype colouring as the art trade declined. The skills required of these artists were minimal as a rule, though we sometimes see a finely tinted daguerreotype plate which reflects the detail which was commonplace in painted miniatures of the first half of the nineteenth century.

In Illustration 8, 8a, and 8b, from the Regent Street studio of William E. Kilburn in London, the officer’s uniform has been extensively coloured with dry (red) and wet (gold) pigment. The capability of the unknown colourist is evident.

COLOURING BY CHEMICAL MEANS
The alternative approach to colouring daguerreotypes derived from accidental ‘solarisation.’ If blue could be produced by accident, then it could be produced on purpose, too. This was the logic behind various patents which were registered in the USA in the 1840s and 1850s describing forms of chemical manipulation which produced colour on the daguerreotype plate after it had been exposed to light. The first patent of this kind, the Daniel Davis Jnr. method (US Patent 2826, 22nd October, 1842) was probably used for little else excepting gold-toning the daguerreotype by electrolysis. This treatment added a richer tonality to both the lighter and darker areas of the plate, and rendered the image less susceptible to damage when pigment was applied with a fine brush. However, a decade later, other American practitioners refined methods of chemical colouring which added an extra dimension to the aesthetic presentation of daguerreotypes portraits.

THE MAGIC BACKGROUND
Charles J. Anthony patented his “Magic Background” process (US Patent 7865, 1st January, 1851), while Henry Insley (US Patent 8633, 6th January, 1851) and William Yarnell (US Patent 9511, 28th December, 1852) offered variant methods which aimed to produce colour by chemical means on the silver plate. They took portraits in the normal way, then protected the central image with a mask or frame before exposing the plate to vapours of heated mercury a second time. Illustration 6 displays some of the limited decorative effects which this sort of intentional chemical manipulation could produce with ease on the daguerreotype plate, while the brightly-lit example, Illustration 7, may well be what Henry Insley described in his patent as an Illuminated Daguerreotype.

THE HELIOCHROME
Ultimately, perfection would have been reached with an ‘improved’ daguerreotype process which reproduced the colours of Nature on the silver plate. French scientists such as Edmond Becquerel and Abel Niépce de Saint-Victor managed to capture the colours of the spectrum on a daguerreotype plate, though these were of strictly scientific interest. Then, in November, 1850, an American daguerreotypist named Levi L. Hill published a manual entitled “The Magic Buff.” Many people thought it was a magic “bluff”, and a heated controversy ensued. Hill claimed to be able to produce blue, red, violet and orange on a single plate.

3These processes are described in detail by Rinhart, F. and M., The American Daguerreotype (Athens, Georgia University Press, 1981), and Chiesa G. and Gosio G., Dagherrotipia, Ambrotipia, Ferrotipia (printed by the authors, 2013)
and in one operation. Hill did not complete his research and publish his manual, “Heliochromy: the Production of Pictures, by Means of Light, in Natural Colours” until 1856, however, by which time the daguerreotype was already losing ground to the cheaper ambrotype (wet collodion positive) process. There has been much discussion in the past 150 years of Levi Hill’s claims. Did he really manage to produce daguerreotypes which mirrored the colours of Nature? Hill’s application for a US patent was refused. The only proof we have are the 62 ‘Hillotypes’ which belong to the Museum of American History, Smithsonian Institution (Cat. 3999.1 to 3999.62), which suggest that Hill did invent a true colour daguerreotype process. Unfortunately for him and for us, the operation was too complicated, and it arrived too late. But that’s another story...
National Treasure Discovered in a Shoebox

The Royal Palace in the Oldest Photograph of Oslo?

by Wlodek Witek, The National Library of Norway, Oslo

**UNKOWN AND UNIQUE**

Five years ago this daguerreotype was hidden in a shoebox with a stack of postcards illustrating architectural motifs in Denmark. The box was part of a bequest and it was opened in Copenhagen by an heir who happened to be an expert on the history of photography. Eventually, this unique photograph found a permanent home at the National Library of Norway, not far from the Royal Palace shown in the view. The plate is mounted behind glass and looks like a mirror image on a polished silver surface.

The image has not appeared in publications regarding the history of photography in Norway. Other daguerreotypes of city views exist, views of Bergen and Trondheim, for example, but they were taken more than 10 years later. The Oslo daguerreotype is a view from a spot in the city which was known at that time as Christiania. Christiania was named after the king of Denmark and Norway, Christian IV, who decided to build a new city in 1624 nearer to the Akershus fortress. The location offered better protection from the frequent town fires which afflicted the population of the earlier, wooden settlement further south. The new streets were laid out in a grid pattern and a law limited the use of wood.

**Ill 2.** Image digitally reversed shows that the light is coming from the left (fjord side) and highlights the palace’s southern aspect. The palace façade with its short columns and high roof were modified ca. 1846. Following major alterations, the palace had a flat roof and a covered balcony which was supported by taller columns.

**Ill 1.** The daguerreotype in its original mounting, typical of the early 1840’s with the octagonal cut white mat and in a thin housing. The image is reversed, a consequence of the daguerreotype process. The National Library of Norway, id. FAU 120, not dated, signed in print “TESTMAN fecit” on the wide gold line of the lithographed mat. Mount size 10,3 x 12,7 cm.
in newly erected buildings. In 1924 the name of the city was changed to Oslo. Today this, the oldest part of central Oslo, started in 1624 is called Kvadraturen.

The daguerreotype quickly became the world’s first widely-used photographic technique, but its introduction into Norway was slow. There are very few specimens which date before 1845, somewhere made by travelling foreigners including Carl Ferdinand Stelzner. Its popularity peaked around 1855, then dwindled towards the end of the decade when other processes, which were cheaper and easier to use, allowed photographers to make multiple copies from glass plates negatives. Although these alternatives spread rapidly through Europe, some photographers in Norway continued to make daguerreotypes until as late as 1868.

This image is one of the oldest photographs known in Norway. It is in relatively good condition, its reasonably intact housing having provided adequate protection, although air and impurities have penetrated the paper-sealed housing. The reverse is covered with a piece of thin blue paper holding the metal plate. The sharp edges of the plate have cut through the paper, allowing air to enter. Degeneration has begun to appear at the edges surrounding the image on its shiny polished silver surface in the form of dark silver sulphide (tarnish), which is often present on daguerreotypes.

To prevent further damage, an extra layer of glass was placed on both the verso and recto and a new seal was attached at the edges. It is presently kept cool and safe in an archival box in one of the National Library’s climate-controlled rooms in underground storage where only a few employees have access to it.

The view over the chimneys and roofs of the city focuses on the considerable volume of the Royal Palace. Like most
early daguerreotypes, this image is optically inverted, which initially made it difficult to pin-point the exact location from which it was taken [ill. 2]. A daguerreotype image is made by a lengthy process which produces one picture only. There is no negative, and no further identical copies can be made from it.

**THE FIRST NORVEGIAN DAGUERREOTYPE CITYSCAPE**

The Palace is the most obvious element in the composition; the buildings in the foreground are actually quite a distance away from the royal residence, which stood outside the city [ill. 3]. The optical resolution near the centre of the image is very good. Magnification enables us to count all the Palace windows, also on its foreshortened side wing [ill. 4].

**THE PALACE HAS BEEN PHOTOGRAPHED BY OTHERS**

The first Norwegian daguerreotypist and professional portrait photographer, Oluf Frederik Knudsen, who established his portrait studio in 1842 in Christiania, made a “successful picture” there in the summer of 1840 and his image received a favourable review in the influential paper Morgenbladet on December 23rd, 1840. Unfortunately, this daguerreotype has not been located. The very first Norwegian photographer, Hans Thøger Winther (1786-1851) had photographed on paper the streets and the magnificent building possibly as early as in 1839 or by 1843 at the latest. His viewpoint was from a spot a stone’s throw from where he lived and conducted an extensive publishing activity with a rental library, bookstore, publishing house, book printing and lithographic press [ill. 5]. Winther’s interest in photography developed rapidly after January 1839, and he independently developed three methods to make photographs on paper in just over three years. His “light images on paper,” as he called his own inventions, were described in his book Instructions “On How To Make Light Images On Paper In Three Different Manners” which he printed in his own establishment in 1845, after several failed attempts to sell it by subscription in Christiania, Stockholm and Copenhagen (1842, 1843) and later in Leipzig (1844). Winther’s criticism of the daguerreotype’s weaknesses and his interest in promoting his paper-based photography may have been partly responsible for the lukewarm Norwegian approach to Daguerre’s process.

**DATING BY SUBJECT MATTER**

The photograph has not been dated by the author so it is not possible to pinpoint the date of the exposure. However, based on existing information about the history of the Royal Palace and the history of the camera, it seems reasonable to date the image close to 1843. The Palace building in the daguerreotype has a gabled roof and a facade with short pillars at ground level in the middle. None of the major changes that would come in 1846 appear to have been started.

An illustration of The Royal Palace in a dated map [ill. 6] shows the building with a flat roof but unchanged facade. If the picture is reliably dated 1844, it would support the theory that the rebuilding of the roof was completed first, beginning in 1844 but that the facade remained unchanged at that time. The official dating of the completed rebuilding is 1846, while the interior had been fully furnished by 1849.

**THE FAST LENS BY J. M. PETZVAL**

Exposure times in photography’s earliest years could be as long as several minutes. This was far better suited to architectural or other still motifs rather than portraits of living persons. This initial period, however, was very brief and portraits became the main subject of the camera made images for the following two decades. Short exposure times were achieved following several developments. One of them was a fast lens, which was championed by Josef Maximilian Petzval, a mathematician from Slovakia who designed such a lens in Vienna in May 1840, and cooperated with the instrument-maker, Peter
Wilhelm Friedrich Voigtländer, in producing a camera body [Ill. 8]. The result, a revolutionary Voigtländer all-metal daguerreotype camera [Ill. 9] used a circular plate. It was an instant success and sold hundreds every year starting January 1841 (700 were sold in the first year of production).

**PICTURE ASSEMBLY: AN UNUSUAL PLATE FORM AND A CAMERA OF VIENNA**

The assembly is simple though elegant, consisting of a thin white mat behind a plate of glass edged with a gilt-embossed paper border. The mat’s octagonal window is surrounded with thick and thin golden lines, one of them bearing the photographer’s signature [Ill. 10].

The thin paper covers the plate edges and separates the delicate image from the glass and is typical of the 1840s. The verso tells an interesting story, as the plate’s unusual form of partial circle can be seen through the thin backing material [Ill. 11]. The top and bottom are straight and parallel, while the sides are evenly curved and follow the shape of a circle where both arcs have a common centre point. The diameter of the circle is about 97 millimeters, which would fit the famous “Voigtländer Ganzmetal” daguerreotype camera with its groundbreaking f/3.6 portrait Petzval lens of f/149 mm focal length and 37 degree angle of view.

The lens was constructed during the first half of 1840 in Vienna by Josef Maximilian Petzval, who engaged the instrument-maker, Peter Wilhelm Friedrich Voigtländer, to construct a camera housing. When this camera appeared on the market in January 1841 it caused a sensation as it could be used for portraiture with the short exposure times offered by the new Petzval lens. Being able to speculate about which camera may have been used just by looking at the shape and size of the picture is a rarity.

**THE VOIGTLÄNDER DAGUERREOTYPE CAMERA**

The camera consists of two conical sections screwed together. The shorter cone contains a ground glass screen with an eyepiece at the end which was used for focusing. The cone would be replaced with a flat, circular plate holder measuring 98 mm in diameter with a sensitized daguerreotype plate for the exposure. To insert the plate, the camera had to be removed from the rack and taken into a darkroom in order not to let daylight spoil the plate. The lens cap functioned as a shutter. The camera could be purchased complete with darkroom equipment and a set of disk-shaped copper plates coated with silver on one side.

**THE PHOTOGRAPHER**

The signature lithographed on the mat “TESTMAN fecit” indicates the author of the view. The placement of the signature is lithographed to suit vertical formats, typical of portraits. One can possibly assume that the photographer worked with portraits and had invested in a stock of these lithographed mats. The word photography was not at the time in general use, hence the use of “fecit”, customary for graphic arts. Testman’s name is not mentioned in contemporary Norwegian publications, but it is found in a list of Danish photographers active in 1844.

Peter Otto Testman (recorded variants are Peder and Olavius and surname variant Testmann) was born in 12.01.11806 in Eiker, Buskerud, Norway, but he spent most of his life in Denmark. His father, Johan Christopher Testman, was born 8.11.1761 at Hauge farm, and his mother, also Norwegian, Sophie Amalie Omsted, was born there in 08.09.1787. The family moved to Copenhagen in 1807, the same year it was heavily shelled by the British Navy which attacked and burned much of the city.

Testman graduated from high school in Copenhagen in 1826. After a few years he returned to Norway, where he began studies at Det Kongelige Frederiks Universitet in Christiania (now Universitetet i Oslo), matriculating in 1827 and continuing with theology studies in 1828, while boarding with merchant Johannes Polti. When his mother died on May 15, 1829, he was there by her side in Christiania. There is no record of him completing a degree in Norway.

In January 1838 he was married in Copenhagen to

---

**HISTORICAL NOTES**

IIl 8. Two Petzval lenses: to the right, No. 135 Voigtländer & Sohn, Vienna, designed by Petzval for the famous all-metal camera Preus Museum, Horten.

IIl 9. Photographic conservator Ann Decker, FoMu Fotomuseum Provincie Antwerpen showing a replica of the Voigtländer daguerreotype camera, nr. 84 and daguerreotypes, 97 mm in diameter, made with the original camera in the early 1840s.
Henriette Marie Hohlenberg. It is mentioned that he exhibited his daguerreotypes in 1844 at The Industrial Society in Copenhagen. At this time he was a starch manufacturer. In spite of having a family, Peter Otto chose to volunteer in 1848 and took part in the three-year Danish-German war as a private in the Tredje Bataljong. Service led him to Glorup where he met and became friends with the poet H. C. Andersen. In May 1848 Andersen wrote a short poem about Testman where he praised his friend, saying: “In thee we feel Norway’s Heartbeat / In time of need they known their Friends”.

His military service was rewarded with promotions to lieutenant, Knight of Dannebrog, and later captain. His career ended as postmaster, a position he held until his retirement. One of his daughters, Caroline Sophie, became a well known activist for women’s rights. In his last years Testman lived as a widower with his other his daughter, Emilie Antoinette, until he died in January 1890.

### BIBLIOGRAPHY
- Den Constitutionelle, 4.02.1839 (Daguerre’s pictures fixed in Camera Obscura) 25.02.1842 (O.F.Knudsen on daguerreotype).
- Digitalarkivet: Døpte Eiker prestegjeld 1801-1814.
- Drammens Tidende, Anmeldte Reisende 03.09.1827, ?.05.1829 (P.O.Testman).
- Fortegnelse over de Studerende ved det kongel. Frederiks Universitet i Christiania i Winter-Semestret 1828 med angivelse af dere hjemstaven og Boepæle. Christiania 1828, p. 56.
- HC Andersen Centret (The Hans Christian Andersen Center): Letter from H.C. Andersen to Peter Olavius Testman.
- HC Andersen Information Odense.
- Høye, Nina E.; Det Kongelige Satt i Oslo, Cappelen Damm As, Oslo, 2008, p. 15.
- Morgenbladet 08.09.1839, 30.05.1842, 10.07.1842 (H.T.Winther Om lysbilleder and subscription), 23.12.1840, 30.01.1842 (O.F.Knudsen exhibition), 18.08.1843, 20.08.1843 (C.F.Stelzner advertisement).
- Ny Hermoder. Et esthetisk Ugeskrift, Christiania 1841-43.
- Statens Arkiver, Dansk Demografisk Database: Folketellinger (Census) 1881, 1845, 1885 København.
Daguerreian Pictures. From Silver To Paper

by Maria Francesca Bonetti, Istituto Nazionale per la Grafica, Rome

After François Arago made the first announcement of Daguerre's invention to the Academy of Sciences of Paris (January 7, 1839), and the subsequent enthusiastic reactions reported by the newspapers of the time, even before anyone knew the actual details of the process, on June 15th 1839 the French Minister Charles Marie Duchâtel presented a bill to the Chamber of Deputies, proposing that the French government should purchase the patent of the invention in exchange for a lifetime annuity for its inventors. In his report he referred to the various benefits that he believed the daguerreotype would bring to the sciences and the arts, and with clarity and foresight he announced that “Being called upon to multiply these images modelled upon nature herself, by reproducing them, the art of the engraver will take on a new level of importance and interest”\(^1\). Exactly one year later, on June 15th 1840, Alfred Donné (1801-1878) presented his procedure to the Academy of Sciences\(^2\). He was thus certainly the first to take up the challenge of transforming daguerreotype plates directly into engraved plates, so as to produce multiple printed copies, thereby overcoming their uniqueness and exclusivity. Donné proposed the etching of a daguerreotype plate by means of nitric acid, a method that he had evidently already experimented with in the course of 1839. A reliable contemporary source that testifies to the early development of this process is the report by Macedonio Melloni (1798-1854), to the Academy of Sciences of Naples on November 12, 1839. This was the first scientific report on the daguerreotype to be presented in Italy. Even before he specifically described the physical-chemical properties of daguerreotype plate by means of nitric acid, a method that he had evidently already experimented with in the course of 1839. A reliable contemporary source that testifies to the early development of this process is the report by Macedonio Melloni (1798-1854), to the Academy of Sciences of Naples on November 12, 1839. This was the first scientific report on the daguerreotype to be presented in Italy. Even before he specifically described the physical-chemical properties of the daguerreotype, the Italian scientist insisted on the importance of the “typographical method of Dr. Donné”, who had - with his early experiments aimed at improving the new process - soon succeeded in “not only stably fixing the highly mobile impressions of the daguerreotype upon metal, but in etching them by means of various substances that are likely to corrode the metal plate [...] Thus we can now produce upon metal, due only to the action of light and some chemical reagents, [...] some grooves that are more or less wide and deep, completely analogous to the process of ordinary engraving, and afterwards to produce several copies upon paper”\(^3\). Donné's process was later perfected and patented (by Hippolyte Fizeau in 1843), as was the method described in 1841 by Charles-Louis Chevalier\(^4\) and those of other less for-


\(^{3}\) “Metodo tipografico del dottor Donné [...] non solo a fermare stabilmente sul metallo le impressioni mobili dell'argentotype, ma ad inciderle mediante alcune sostanze che probabilmente corroderanno la lamina metallica [...] Laonde ora si possono produrre su metallo e per la sola azione della luce e di alcuni chimici reagenti [...] degli scavi più o meno larghi e profondi totalmente analoghi ai lavori dell’incisione ordinaria, e trarne possa apparecchi esemplari su carta.” See: Relazione intorno al dagherrotipo letta alla R. Accademia delle Scienze di Napoli nella tornata del 12 novembre 1839 da Macedonio Melloni uno dei Quaranta della Società Italiana delle Scienze, Napoli, dalla Tipografia di Porcelli, 1839 (also published in “Gior. Arcadico”, Roma, Tipografia delle Belle Arti, 1840, tomo LXXII, from which the quotation is taken, p. 6).

\(^{4}\) The optician Charles-Louis Chevalier (1804-1859) devised a procedure for obtaining copies of daguerreotypes on copper plates by means of the electrotype system, without destroying the originals, which he described in Nouvelles Instructions sur l’usage du daguerreotype. Description... d’un appareil très simple destiné à la reproduction des épreuves au moyen de la galvanoplastie... Paris, chez l’auteur, 1841 and then in Mélanges photographiques. Complément des nouvelles instructions sur l’usage du daguerreotype, Paris, chez l’auteur, 1844, pp. 74-81. For his work as a daguerreotypist and experimenter see Paris et le daguerreotype, exhibition catalogue, Paris, Paris-Musées, 1989, pp. 227-228, cat. 79-85.

III. 2. Joseph Berres Wien. View from the Observatory of the Old University to St. Stephen’s Cathedral, 1840. Print from etched daguerreotype, by permission of Albertina, Höhere Graphische Bundes - Lehr- und Versuchsanstalt Wien
The inventor of the process particularly appreciated its qualities of precision, objectivity and absolute fidelity to the “real”, as guaranteed by the absence of any kind of manual intervention or the mediation of an artist, and he therefore did not think it was in any way possible to derive faithful copies from the daguerreotype. Nevertheless, despite these claims, there were many persistent attempts by his contemporaries, particularly in the field of printing and publishing, to ensure the widest possible enjoyment of these wonderful, and hitherto unsurpassed, images of reality. The intention was to make them available to an ever wider and more varied audience, which in previous decades had grown accustomed to an easier accessibility to a large number of images particularly thanks to the diffusion of lithography. In this way, that, from the mid-nineteenth century onwards, had produced greater numbers of prints at a lower cost.

In October 1839 the British magazine “The Athenaenaeum” published an article dedicated to the various experiments concerning the direct reproduction of daguerreotypes. After mentioning the rather poor results obtained by Donné’s procedure, as well as the “heliographic” process (“héliographie”) of Nicéphore Niépce, a letter from Daguerre to the Academy of Sciences of Paris is cited. The illustrious inventor of the daguerreotype states that he himself conducted a number of experiments, with the aim of making the instable image formed on the silver-coated copper plate more permanent, but without obtaining satisfactory results: “I therefore commenced a series of experiments with the aid of acids, and I obtained various results; [...] but the results were defective, and always for the reason before mentioned - namely, the impossibility of biting with acid, without the intervention of the engraver’s art: besides, I knew that silver is too soft to give even a small number of impressions...”. Daguerre’s apparent renunciation, at least officially, of the possibility to replicate the daguerreotype, is closely related to its “photogenic” nature (as an image automatically generated by the action of light), and it was conjectured that he had abandoned the mechanical reproduction of his daguerreotypes on the engraver’s art: besides, I knew that silver is too soft to give even a small number of impressions...”. The intention was to make daguerreotypes seem rather unsurpassed, images of reality in an extraordinarily authentic “analogon” or exact counterpart of visual reality), and the picturesque character of the views, particularly dear to the romantic spirit, was given a strong prominence that makes their derivation from daguerreotypes seem rather look suspect and doubtful. Instead, for the analogous but far more famous series Excursions daguerriennes, the French Parisian publisher Noël-Marie Paymal Lerebours (1807-1873) chose the aquatint, “that most closely resembles nature”, with the use of steel as a support, “because it allows one to combine delicacy with solidity”.

Noël-Marie Paymal Lerebours began to publish this series of prints in 1840, issued in folders containing four plates each. The entire series then appeared in an extra fine edition in two volumes, the first of which, with sixty prints, was published in 1842, while the second, consisting of fifty-one prints, was published...
to be completed before October 30th 1843, as announced in an advertisement published by Lerebours in the pages added to the fourth edition of his Traité de Photographie (June 1843). This advertisement gives us a great deal of important information concerning the overall publishing programme, Lerebours' intentions, the various authors who wrote the accompanying texts, the various pictures already published or planned for publication in the second series, as well as several other lesser collections available for buyers and their relative prices. In this note, that boasts of the great popularity soon attained by the album Excursions daguerriennes, Lerebours confirms that "in this second attempt, as well as in the first, we shall have the co-operation of eminent artists, and of writers of established fame, worthy to do justice, by the graver or the pen, to the same masterpieces that Daguerre's instrument so faithfully copies, by means of the sun, the light and the shade." Here the term "graver" [burin in the original French] evidently refers to the various techniques of engraving as well as etching, since in fact the prints were obtained with the graphic procedures of the aquatint and, in some cases, lithography.

In his Traité, Lerebours thoroughly discusses the various procedures tested hitherto in order to obtain the engraving of daguerreotypes or their copying by means of electro-plating. He explains and discusses Donné's method, as well as the similar process of Joseph Berres (in chapter XXII, "De la gravure") and Hippolyte Fizeau's procedure of reproduction of the plates through electro-plating (in chapter XXI, "De la reproduction des épreuves par la galvanoplastie")15,16, relating to his regard for daguerreotypes or their etching plating. He explains and discusses Donné's method, as well as the similar process of Joseph Berres (in chapter XXII, "De la gravure")14, that of W. R. Grove (in chapter XXIII, "De la gravure des images photographiques, par M. W. R. Grove")13, and Hippolyte Fizeau's method of reproduction of the plates through electro-plating (in chapter XXI, "De la reproduction des épreuves par la galvanoplastie")15,16, which, he regarded as still unsurpassed, "for the large plates that he produced were admirable". In a note commenting on the method of Donné, Lerebours describes Fizeau's recently developed process for engraving daguerreotype plates "which is very superior to any hitherto known. We have seen some of the proofs struck off, without any particular care, by a workman of extraordinary ability, and we can affirm that the most of these engravings, when seen through a magnifying-glass, showed the exact representation of the Daguerreian image, with its most minute details. Moreover, in the proofs which have been submitted to our examination, the dark parts of the picture were reproduced with a great degree of vigour, and, what is very remarkable, the white parts of the paper were perfectly pure. When one reflects on the future results of this discovery, one cannot be surprised that Mr. Fizeau should have wished to keep it secret. For our own part, it would be of immense utility to us for the publication of the Daguerreian Excursions; for, with its aid, we might immediately repro-

---

11...qui ressemble le plus à la nature [...] parce qu’il permet d’unire la finesse à la solidité... See: [N.M.P. Lerebours], Avis de l’éditeur, in Excursions daguerriennes, représentant les vues et les nombreux monuments anciens et modernes les plus remarquables du Globe..., Paris, N.P. Lerebours, Place du Pont-Neuf 13; Rittner et Goupil, Boulevard Montmartre 15; Hr Bossange, Quai Voltaire 11, 1840-1843 (111 plates, then also published in two volumes: the first in 1842, the second between 1843 and 1844). The quotation is taken from the volume of the first series (1842), also quoted in André Rouillé, La Photographie en France. Textes et Controverses: une Anthologie 1816-1871, Paris, Macula, 1989, pp. 60-67.


duce, at very small expense, the remarkable views which our correspondents are continually sending us; and, in order to avoid any greater or lesser alteration in the press, we should immediately reproduce several plates by the electrotypes".

The method of Fizeau, who since 1841 had resumed and developed Donné's experiments, was based on a combination of a chemical treatment (an etching of the original daguerreotype plate by acid), with an electrolytic process (strengthening the etching by means of a layer of copper obtained by electrotypes) [Ill. 3]. However, this method was still unable to satisfy Lerebours' exacting requirements for printing and in fact the latter used this method for only three prints of his oeuvre. The images obtained by the method of Fizeau, although precise, did not retain the same fine details of the original daguerreotype plates, and they were rather complex and impracticable to create. However, Lerebours emphasized the potential of this process, and brought it to the attention of the subscribers to his series of prints. In fact, for them he realized a special issue of a print impressed directly from a daguerreotype of one of the bas-reliefs of Notre-Dame de Paris, etched with the method of Fizeau, in the days immediately following its official presentation [Ill. 4]. In the second volume of the series Excursions daguerriennes (published between 1843 and 1844), together with the addition of six lithographs at the request of several subscribers to give a greater variety to the collection, he included the above-mentioned print (Plate 24, accompanied by an explanatory text by Challamel, Un des Bas-reliefs de Notre-Dame de Paris. Épreuve de daguerréotype transformée en planche gravée – Procédé Fizeau, which also contained a short technical description of the procedure) in addition to two others that were realized in the same way, by etching the daguerreotypes directly by chemical means, without any manual retouching (Plate 19, Hotel-de-Ville de Paris and Maison élevée rue St George par M. Renaud, a plate that was added in only a few special editions of the second series, between plates 33 and 34, but not included in the index of the volume and realized, as Henry Berthoud explains in the accompanying text, from a daguerreotype that was not directly taken of the building but of the drawing that the architect had exhibited at the Louvre, "engraved after the admirable Fizeau process".

In addition to these plates, explicitly carried out by the Fizeau method of etching, there are currently a few other rare examples of experiments conducted by directly engraving daguerreotype plates, and in some cases the plates themselves survive, even though the paper proofs that were taken from them do not.

It is moreover hard to precisely identify the surviving daguerreotypes which were copied or traced by the etchers and engravers in order to transfer the image to the plates used for the prints that are known to us today. In some cases it is possible to guess, due to the close similarity of the daguerreotype with the relative print, as in the case of the daguerreotype probably commissioned by Lerebours Saint Pierre et Chateau St. Ange. Vue prise

---

18 Louis Armand Hippolyte Fizeau (1819-1896) did not patent his process until September 12th 1843, and he presented it at the Academy of Sciences on the 8th of July 1844. See H. Fizeau, Procédé de gravure photographique, in “Bulletin de la Société d’encouragement pour l’industrie nationale”, Paris, Quarante-troisième année (N. CCCCLXXXIV), octobre 1844, p. 452.
19 Alfred Donné himself had already judged this method somewhat unreliable: see Alfred Donné, Cours de microscopie complémentaire des études médicales... Atlas exécuté d’après nature au microscope-daguerréotype, Paris, Baillière, 1845 (86 etchings by Oudet after daguerreotypes by Jean-Bernard-Léon Foucault), Introduction, pp. 5-14 (partly republished in Rouillé, La Photographie..., op. cit., pp. 73-76).
20 "... gravé d’après l’admirable procédé Fizeau". See the second volume of Excursions daguerriennes (ed. Paris, Lerebours, Rittner et Goupil, H. Bossange, 1840-1844 [1844]) kept at the Bibliothèque nationale de France (Département des Estampes et de la Photographie, VH-40 PET FOL) which contains 52 prints (instead of the 51 listed in the index of the volume) and an Avis aux Souscripteurs. (Épreuves de daguerréotype transformées en planches gravées. - Procédé de M. Fizeau). Read on line

National Technical Museum, inv. 24214
du port Ripetta à Rome, now in the Robinson University Library of Newcastle. This plate is very similar to the print depicting the same subject, published by Lerebours in the first series (1842) of the *Excursions daguerriennes*, and its surface also appears to be particularly damaged, perhaps because it was used as a template for copying it to create the etched plate [III. 5-6].

We must however bear in mind the close similarity of scenes that were photographed from the same point of view, but above all it must be considered that copying a daguerreotype to create an etching or an engraving, typically led to its loss, due to its manipulation in the tracing or transfer of the image, which tended to destroy the delicate daguerreotype image on the silver plate.

Lerebours himself, again in his *Traité de photographie* [A Treatise...], in the short chapter entitled “On the transfer of the proofs”, describes one of the methods for transferring images directly from the daguerreotype plate: “A great many researches have been made on the possibility of transferring Daguerreian images upon the lithographic stone. Up to the present time [1843], these inquiries have been fruitless, and the only results which have attended them, consist in a method of transferring the image depicted on the plate, by means of a press, to a sheet of black paper covered with a coating of gelatine in a moist state. It is left in the press for about half an hour, and, at the expiration of that time, dried in the sun; the paper then separates from the plate, and tracings of the Daguerrean image, more or less complete, will be seen on its surface”22.

More usually views “d’après le daguerréotype” were produced by manual transpositions, in which the interventions of artists (the draftsmen or engravers), are still very evident, and in some cases they produced a “corrected” image of the scenes, sometimes with a certain deformation of the perspective of the space, thereby providing a more simplified and emblematic interpretation of the topoi selected. An example of this is the view of the Port Ripetta à Rome, of which, in addition to the print included in the *Excursions daguerriennes* (dated as early as 1840), also a daguerreotype is known to exist, probably commissioned by Lerebours himself, as were many of those used for his series of prints. It was then sold in London, by Claudet & Houghton to Hugh Lee Pattinson, who was also a chemist and a daguerreotypist, from whose collection the plate arrived at the Robinson University Library of Newcastle upon Tyne23 [III. 7-8].

Like Lerebours the Milanese publisher Ferdinand Artaria, who since the spring of 1840 had begun to publish, on separate sheets, the series of prints *Vues d’Italie d’après le daguerréotype* - at first featuring only the city and the territory of Milan and then extended to the most popular sites and localities of the Italian Peninsula - opted for the technique of aquatint, entrusting the translation of the daguerreotype plates onto copper to some of the most skilled etchers of vedute who were active in Milan at the time (such as: Louis Cherbuin, Johann Jakob Falkeisen and Francesco Citterio). The aquatint is in fact characterized by tonal effects and gradations, not by means of incised lines, but by areas covered with very fine dots, obtained by graining with powdered rosin, and thus it was more effective than other methods.

21 See, in particular, the proofs taken from etched daguerreotypes, by an unidentified hand, kept at the Musée Carnavalet in Paris (some of which represent the church of Saint-Sulpice) and those of Hippolyte Fizeau in a private collection, in addition to the proof that accompanied the latter’s patent application, filed in June 1843 (now in the Institut national de la propriété industrielle, Paris). Also some etched plates by Fizeau still exist, depicting views of the rooftops of Paris (at the Musée d’Orsay and the collection of Serge Kakou, in Paris) and the Dôme des Invalides (Santa Monica, J. Paul Getty Museum). See Paris et le daguerréotype, op. cit., p. 235, cat. 103, and pp. 262-263; Bajac, Planchon-de Font-Réaulx, Le daguerréotype..., op. cit., p. 219, cat. 124-125 and pp. 234-236, cat. 141-142.


23 See Bajac, Planchon-de Font-Réaulx, Le daguerréotype..., op. cit., p. 357, cat. 302-303. The above-mentioned view of St. Peter’s and Castel Sant’Angelo has the same provenance.

III. 5 Photographer unknown [Daguerréotype Lerebours à Paris]. Saint Pierre et Château St. Ange à Rome. Vue prise du port Ripetta à Rome, 1839-1840. Daguerréotype, full plate. Newcastle University, Robinson Library Special. Collections (by permission of the Librarian, Robinson Library, Newcastle University)

looking at reality

graphic techniques at suggesting the subtle effects of light and shade and the continuous gradations and textures of the photographic image, successfully conveying the delicate nuances of shading in the sky and subtle tints that were particularly appreciated those with aesthetic tastes inclining towards the Romantic.

The engravers worked “after transferring the image to steel, by means of tracing the drypoint, thanks to which the outline of the work was indicated”, then “the special task of the artist, in the execution, is to complete with colour the character of the sites, monuments or objects represented”; and also “The engraved views will be enlivened by figures. When the pictures taken on the site have none, they will be provided with some groups depicted by sketches from the life made in the same localities”.

Similarly, in the contract he drew up with Artaria, the engraver Louis Cherbuin undertakes “to trace the outlines of the objects represented, from the above-mentioned plates, transpose them to copper and there execute the similar shadows with the addition of the sky and the small figures required according to the present agreement”.

As a testimony to the particular drawing skills of the engravers chosen by Artaria, especially in being able to gracefully include groups of figures to animate the views, according to the hitherto prevailing traditions and stereotypes of painting and graphic art, some of their finished watercolour drawings still survive, which were certainly used as preparatory sketches for some views of the series, and they correspond exactly (also in their dimensions) to various prints, for which they certainly constituted the model.

Direct descendants of the eighteenth and nineteenth century Voyages pittoresques, that contributed towards forming and establishing the stereotypes for landscapes and the emblematic topoi of cityscapes, in the series of prints “after the daguerreotype” the introduction of figures in the foregrounds, as well as for decorative purposes, was seen as essential for the artists in order to satisfy the demand for the “picturesque” that was still persistent and widespread in the buying public, which at the time largely consisted of travellers who considered the representation of popular customs and vivacious daily activities in the places depicted, as one of the most evocative elements of such scenes.

Alongside this, however, the intention to objectively document the monuments, landscapes, and urban contexts was now more manifestly apparent, and there sometimes seems to be an attempt to confer a greater degree of simplicity and essentiality upon the images, especially in those cases in which they represent contemporary architectural features and monuments, which could not have appeared in the older prints, and they correspond exactly (also in their dimensions) to various prints, for which they certainly constituted the model.

The engravers chosen by Artaria, especially in being able to gracefully include groups of figures to animate the views, according to the hitherto prevailing traditions and stereotypes of painting and graphic art, some of their finished watercolour drawings still survive, which were certainly used as preparatory sketches for some views of the series, and they correspond exactly (also in their dimensions) to various prints, for which they certainly constituted the model.

Direct descendants of the eighteenth and nineteenth century Voyages pittoresques, that contributed towards forming and establishing the stereotypes for landscapes and the emblematic topoi of cityscapes, in the series of prints “after the daguerreotype” the introduction of figures in the foregrounds, as well as for decorative purposes, was seen as essential for the artists in order to satisfy the demand for the “picturesque” that was still persistent and widespread in the buying public, which at the time largely consisted of travellers who considered the representation of popular customs and vivacious daily activities in the places depicted, as one of the most evocative elements of such scenes.

Alongside this, however, the intention to objectively document the monuments, landscapes, and urban contexts was now more manifestly apparent, and there sometimes seems to be an attempt to confer a greater degree of simplicity and essentiality upon the images, especially in those cases in which they represent contemporary architectural features and monuments, which could not have appeared in the older prints, and they correspond exactly (also in their dimensions) to various prints, for which they certainly constituted the model.
Baron Séguier’s Daguerreotype Equipment and Daguerreotype

by Nicholas Burnett, Museum Conservation Service, Ltd, Cambridge

III 1. The camera and equipment, Collection Nicholas Burnett
Baron Armand Pierre Séguyer was 36 when Arago announced Daguerre's stunning invention to the French Académie des Sciences on the 7th of January 1839.

Nine months later on the 9th of October 1839 Séguyer made his own announcement to the officers of the Société d'Encouragement pour l'Industrie Nationale regarding his innovative portable daguerreotype camera and processing kit [Ill 1].

The plate shows a bellows camera which looks more like something from the 1850s than 1839. It is in fact the world's first bellows camera. At a time when other camera bodies were little more than bulky wooden boxes, Séguyer had designed a relatively lightweight camera that could be folded for transportation. He had combined this with all the equipment required to process daguerreotypes in the field, introducing several important innovations while doing so.

The plate was published five months later in the March 1840 issue (number 429) of the Bulletin of the Société d'Encouragement pour l'Industrie Nationale. A short text accompanies the plate. The delay in publishing could be accounted for by the need to engrave the finely detailed plate; the text, at less than 600 words, would not have taken long to write. A translation of the text [pg. 48] explains the diagrams on the plate. The plate shows the world's first use of a camera tripod as well as the first photographic use of a ball and socket joint. The doubling up of the tripod as a makeshift darkroom is ingenious and is the key to being able to process plates in the field.

Although the text states that Séguyer presented a photographic apparatus to the meeting, the design in the plate appears to be a work in progress. The stand and outline mercury box in Figure 9 are very different from the same equipment shown in Figure 1. In Figure 1 the mercury box forms the bottom of the carrying case, while Figure 9 shows it as a smaller, self-contained box, in outline. The arrangement in Figure 1 is impractical: the carrying box would have been too heavy on the metal stand and easy to knock over unless braced against the tripod legs. However, this very bracing would have made it difficult to open the top of the carrying case very difficult in the restricted space when inserting or removing the plate, especially as the canvas cover need to be closed during this operation. (There would have been little room left for the photographer inside the 'darkroom'.)

Figure 1 shows the bottom of the box hinged around and up to the left to allow the mercury reservoir to be heated. Figure 2 reveals that the bottom of the case has a hinge on the left side and a catch on the right. Neither figure shows a window to allow the development to be monitored. It would not have been easy to open the box, reach down, retrieve the plate, examine the state of development and replace it for further development within the confines of the tiny tent. However, the similarity in size and shape of the mercury box in Figure 9 to the iodine fuming box in Figure 11 suggests that during the engraving process Séguyer changed his design, incorporating a removable mercury box which fitted outside the iodine fuming box. This would have solved the problem of opening the box when working under the tripod and allowed some space for the photographer.

The bellows are held extended by iron rods, \( f \). The rods appear to be fixed to the central part of the camera and swing out to be inserted into slots in the camera ends, being held in place by hooks that engage holes in the rods. The holes are spaced so to...
The Baron Séguier presented to the administrative council/Board of Directors, at its meeting of 9th October 1839, a camera which he brought, adapted to make it more portable, with less volume and of considerably lighter weight, without changing the size of the plates; these changes intended to make feasible, deep in the countryside, the various operations of photography, even those that seem to demand a darkroom against strong light.

The apparatus, shown with all its details in plate 790, is composed of a black bellows chamber, which folds on itself and is provided with a handle to make it easily transportable; it is housed in a box also containing the iodine box, the mercury box, the bottles, the alcohol lamp and other accessories. The camera is supported on a tripod with a ball joint that allows it to assume all desirable positions. A mantle of waterproof and light canvas, iron strips that unfold to hold the bellows and penetrate the front and back of the camera, creating eight places where light could potentially leak in. Within a short time of using the camera, Séguier would have probably changed the arrangement and placed the bellows outside the bellows.

The Baron Séguier presented to the administrative council/Board of Directors, at its meeting of 9th October 1839, a camera which he brought, adapted to make it more portable, with less volume and of considerably lighter weight, without changing the size of the plates; these changes intended to make feasible, deep in the countryside, the various operations of photography, even those that seem to demand a darkroom against strong light.

The apparatus, shown with all its details in plate 790, is composed of a black bellows chamber, which folds on itself and is provided with a handle to make it easily transportable; it is housed in a box also containing the iodine box, the mercury box, the bottles, the alcohol lamp and other accessories. The camera is supported on a tripod with a ball joint that allows it to assume all desirable positions. A mantle of waterproof and light canvas, iron strips that unfold to hold the bellows and penetrate the front and back of the camera, creating eight places where light could potentially leak in. Within a short time of using the camera, Séguier would have probably changed the arrangement and placed the bellows outside the bellows.

The Baron Séguier presented to the administrative council/Board of Directors, at its meeting of 9th October 1839, a camera which he brought, adapted to make it more portable, with less volume and of considerably lighter weight, without changing the size of the plates; these changes intended to make feasible, deep in the countryside, the various operations of photography, even those that seem to demand a darkroom against strong light.

The apparatus, shown with all its details in plate 790, is composed of a black bellows chamber, which folds on itself and is provided with a handle to make it easily transportable; it is housed in a box also containing the iodine box, the mercury box, the bottles, the alcohol lamp and other accessories. The camera is supported on a tripod with a ball joint that allows it to assume all desirable positions. A mantle of waterproof and light canvas, iron strips that unfold to hold the bellows and penetrate the front and back of the camera, creating eight places where light could potentially leak in. Within a short time of using the camera, Séguier would have probably changed the arrangement and placed the bellows outside the bellows.

The apparatus, shown with all its details in plate 790, is composed of a black bellows chamber, which folds on itself and is provided with a handle to make it easily transportable; it is housed in a box also containing the iodine box, the mercury box, the bottles, the alcohol lamp and other accessories. The camera is supported on a tripod with a ball joint that allows it to assume all desirable positions. A mantle of waterproof and light canvas, iron strips that unfold to hold the bellows and penetrate the front and back of the camera, creating eight places where light could potentially leak in. Within a short time of using the camera, Séguier would have probably changed the arrangement and placed the bellows outside the bellows.

The apparatus, shown with all its details in plate 790, is composed of a black bellows chamber, which folds on itself and is provided with a handle to make it easily transportable; it is housed in a box also containing the iodine box, the mercury box, the bottles, the alcohol lamp and other accessories. The camera is supported on a tripod with a ball joint that allows it to assume all desirable positions. A mantle of waterproof and light canvas, iron strips that unfold to hold the bellows and penetrate the front and back of the camera, creating eight places where light could potentially leak in. Within a short time of using the camera, Séguier would have probably changed the arrangement and placed the bellows outside the bellows.

The apparatus, shown with all its details in plate 790, is composed of a black bellows chamber, which folds on itself and is provided with a handle to make it easily transportable; it is housed in a box also containing the iodine box, the mercury box, the bottles, the alcohol lamp and other accessories. The camera is supported on a tripod with a ball joint that allows it to assume all desirable positions. A mantle of waterproof and light canvas, iron strips that unfold to hold the bellows and penetrate the front and back of the camera, creating eight places where light could potentially leak in. Within a short time of using the camera, Séguier would have probably changed the arrangement and placed the bellows outside the bellows.

The apparatus, shown with all its details in plate 790, is composed of a black bellows chamber, which folds on itself and is provided with a handle to make it easily transportable; it is housed in a box also containing the iodine box, the mercury box, the bottles, the alcohol lamp and other accessories. The camera is supported on a tripod with a ball joint that allows it to assume all desirable positions. A mantle of waterproof and light canvas, iron strips that unfold to hold the bellows and penetrate the front and back of the camera, creating eight places where light could potentially leak in. Within a short time of using the camera, Séguier would have probably changed the arrangement and placed the bellows outside the bellows.

The apparatus, shown with all its details in plate 790, is composed of a black bellows chamber, which folds on itself and is provided with a handle to make it easily transportable; it is housed in a box also containing the iodine box, the mercury box, the bottles, the alcohol lamp and other accessories. The camera is supported on a tripod with a ball joint that allows it to assume all desirable positions. A mantle of waterproof and light canvas, iron strips that unfold to hold the bellows and penetrate the front and back of the camera, creating eight places where light could potentially leak in. Within a short time of using the camera, Séguier would have probably changed the arrangement and placed the bellows outside the bellows.

The apparatus, shown with all its details in plate 790, is composed of a black bellows chamber, which folds on itself and is provided with a handle to make it easily transportable; it is housed in a box also containing the iodine box, the mercury box, the bottles, the alcohol lamp and other accessories. The camera is supported on a tripod with a ball joint that allows it to assume all desirable positions. A mantle of waterproof and light canvas, iron strips that unfold to hold the bellows and penetrate the front and back of the camera, creating eight places where light could potentially leak in. Within a short time of using the camera, Séguier would have probably changed the arrangement and placed the bellows outside the bellows.

The apparatus, shown with all its details in plate 790, is composed of a black bellows chamber, which folds on itself and is provided with a handle to make it easily transportable; it is housed in a box also containing the iodine box, the mercury box, the bottles, the alcohol lamp and other accessories. The camera is supported on a tripod with a ball joint that allows it to assume all desirable positions. A mantle of waterproof and light canvas, iron strips that unfold to hold the bellows and penetrate the front and back of the camera, creating eight places where light could potentially leak in. Within a short time of using the camera, Séguier would have probably changed the arrangement and placed the bellows outside the bellows.

The apparatus, shown with all its details in plate 790, is composed of a black bellows chamber, which folds on itself and is provided with a handle to make it easily transportable; it is housed in a box also containing the iodine box, the mercury box, the bottles, the alcohol lamp and other accessories. The camera is supported on a tripod with a ball joint that allows it to assume all desirable positions. A mantle of waterproof and light canvas, iron strips that unfold to hold the bellows and penetrate the front and back of the camera, creating eight places where light could potentially leak in. Within a short time of using the camera, Séguier would have probably changed the arrangement and placed the bellows outside the bellows.

The apparatus, shown with all its details in plate 790, is composed of a black bellows chamber, which folds on itself and is provided with a handle to make it easily transportable; it is housed in a box also containing the iodine box, the mercury box, the bottles, the alcohol lamp and other accessories. The camera is supported on a tripod with a ball joint that allows it to assume all desirable positions. A mantle of waterproof and light canvas, iron strips that unfold to hold the bellows and penetrate the front and back of the camera, creating eight places where light could potentially leak in. Within a short time of using the camera, Séguier would have probably changed the arrangement and placed the bellows outside the bellows.
WHO WAS BARON ARMAND-PIERRE SÉGUIER?

He was born in Montpellier on the 3rd of July 1803 into a noble family. From 1824 he followed his father's profession and practised as a lawyer. At the same time he pursued a longstanding interest in science and mechanics covering such diverse subjects as clockwork and locomotives. He published his "Mémoire sur les appareils producteurs de vapeur, lu à l’Académie des Sciences" in 1832 and became a member of the Académie des Sciences the following year. He seems to have been a very active member as his name appears on numerous occasions in the Comptes Rendus, including his 1840 paper relating to sensitising daguerreotype plates. On the 14th of February 1842 Séguier was elected to the Royal Scottish Society of Arts. After his father's death in 1848 he gave up his legal practice and was able to devote himself more fully to his mechanical and scientific interests. The same year he published, "Perfectionnements dans la marine à vapeur".

In May 1851 he was made an honorary member of the British Meteorological Society and received the Légion d’honneur. 1855 finds Séguier on the list of the first members in the French Society of Photography. He died in 1876. Returning to 1839, most interestingly, Séguier was part of a small circle of amateurs that surrounded Jacques-Louis-Mandé Daguerre.

As a member of the Académie des Sciences Séguier may have been present at Arago's announcement to that body in January 1839. Was he present when the process was first publicly explained, step by step, before a joint session of the Académie des Sciences and the Académie des Beaux-Arts on the 19th of August? If we assume Séguier's first detailed knowledge of the process dates from the 19th of August, this gives a mere seven weeks before Séguier was able to present his newly designed and constructed camera on the 9th of October. Again, this suggests that the camera and equipment was still being refined.

Only one daguerreotype by Séguier is known, the beautiful, “Still Life with Plaster Casts” in the J. Paul Getty Museum. Séguier donated two other plates to the Académie des Sciences in 1840 along with a description of his method for preparing the plates but these daguerreotypes cannot be located and are presumed lost. Could the Getty image have been taken with Séguier's camera? The daguerreotype plate measures 8 1/2 x 6 1/2 inches (21.6 x 16.2 cm) whereas, the camera's maximum plate size appears to be around 8 55/64th x 5 20/64th inches (22 1/2 x 13 1/4 cm), an unusual size for daguerreotypes. It is most unlikely that the engraver has made a mistake as the engraving is copied from the engraver's own measured drawing and is scaled. The plate holder is too small for this daguerreotype to have been taken with this camera. The J. Paul Getty Museum dates the Séguier daguerreotype to 1839.

---

7 Sur l’ioduration des planches métalliques destinées à recevoir les images, et ser le rôle que jouent les bandes de plaque don’t on a coutume de les entourer’, Armand Pierre Séguier, in Comptes rendus hebdomadaires des séances de l’Académie des Sciences, January 6, 1840.
9 Pinson
10 The 1850 And 1851 Membership Lists of The British Meteorological Society, p. 6. Available here
11 Wikipedia
13 Getty Edu consulted on 11/5/2014
14 Accession number 2002.41
16 Pinson, catalogue entry
17 Size calculated by measurement against the printed scale in the illustration

III 2. “Daguerreotypomania” by Theodore Maurisset which was published in December 1839. Getty Search Gateway Detail of III 2. Showing Séguier holding his “APPAREIL PORTATIF POUR LE VOYAGE”.

ILL 2. “Daguerreotypomania” by Theodore Maurisset which was published in December 1839. Getty Search Gateway
between 1839 and 1842. It may be possible to date it more precisely. The plate appears similar to plates produced by iodine sensitisation alone. The addition of bromine or chlorine to the sensitisation process was discovered in mid to late 1840. It was published by the end of the year and was then rapidly adopted. An iodine-sensitised plate is likely to be earlier than 1842.

In 1841 the optician Charles Chevalier (1804–59) wrote that, “Groups of art objects form very gracious images and are easy to reproduce (...) One should choose but the best models, such as the beautiful specimens by Mr. Hubert and Baron Séguier. The latter gave us one of his groups that, although it was done a long time ago by the old procedure, still excites the admiration of artists”. Could the Getty plate be the plate referred to here?

Quite possibly, the Getty plate was clearly thought to be of a quality suitable to be presented by Séguier to the curator of antiquities at the Louvre, the Comte de Clarac, as recorded by an inscription on the verso.

The “old procedure” mentioned by Chevalier is Daguerre’s original process which used iodine sensitisation alone, exactly the same as the Getty plate. Writing in 1841, the phrase “done a long time ago” may refer to 1840 or more likely, 1839.

Séguier had learnt the daguerreotype process from Daguerre himself. As Geoffrey Batchen notes: “In order to promote his invention, Daguerre offered free public demonstrations at various establishments in Paris after August 1839, and Baron Armand-Pierre Séguier appears to have been among his most enthusiastic followers”. Intriguingly, the statue of Jupiter in the Séguier plate also appears in a plate by Daguerre [Ill 6]. The Getty catalogue lists the Séguier plate as being by “Baron Armand-Pierre Séguier, possibly in association with H. Louis-Jacques-Mandé Daguerre”. This association seems likely. The plate size would not fit Séguier’s camera though it would have fitted Daguerre’s. Since Séguier was able to present a camera to the meeting on the 9th of October he would most probably have used his own camera after that date, and possibly a little before. The daguerreotype may therefore date from between the 19th of August and the 9th of October 1839.

Séguier’s photographs are extremely rare. He did not exhibit his work and seems to have been more interested in other branches of science and art.
mechanics. His other early contributions to photography include a new design for an iodine fuming box and a type of washing tray. His contributions to photography seem to have then tailed off. In the early 1850s, however, he experimented with making direct wet collodion positives by backing them with canvas coated with black wax. On the 1st of December 1852 he is recorded as presenting Niepce de Saint-Victor’s unixed colour daguerreotypes to the Société d’Encouragement pour l’Industrie Nationale.

Séguier’s camera and equipment made more of a lasting impact than his photography. The use of a tripod with a ball-and-socket joint was widely reported and adopted. Camera bellows and the various space and weight saving innovations were less easily described and needed a costly illustration for clarity. This may account for the delay in the adoption of bellows by camera makers. Although one beautiful daguerreotype by Séguier has survived, his ground-breaking camera and innovative equipment are not known to have survived to the present day.


M. Robert se sert exclusivement des cuvettes à fond de glace ou de verre double, avec bords en bois vernis au pinceau, à l’aide de vernis épais de copal et de laque. Ces cuvettes sont très commodes, présentent un fond bien plat et si des accidents arrivent on peut facilement les raccommoder. En effet, si quelques fissures se font on les rebouche à l’aide d’un pinceau et de vernis. Si le fond se casse on adapte un autre, ou s’il n’y a qu’une simple fente on colle une bande de papier que l’on enduit de vernis et la cuvette peut très bien servir. On peut construire des cuvettes de toutes grandeurs, ce qui est très difficile et même impraticable avec la porcelaine; on doit se rappeler que l’idée première de ces cuvettes appartient à M. le baron Séguier.

Roughly translated as, ‘Mr. Robert uses exclusively trays with a glass base or double glass, with edges varnished with a wooden brush, using thick copal varnish and lacquer. These trays are very convenient, have a good flat bottom and if accidents happen you can easily mend them. Indeed, if there are some cracks they can be blocked again using a brush and varnish. If the bottom breaks we adapt another, or if there is a single crack gluing a strip of paper that is coated with varnish and the bowl may well serve. You can build bowls of all sizes, which is very difficult and even impractical with porcelain; it must be remembered that the first idea of these bowls belongs to Baron Seguier.’

Mélanges Photographiques, Marc Antoine Augustin Gaudin in La Lumiere, No. 17, April 23rd 1853, p.67

The New York Times, the 3rd of January 1853

Details of III 1. The camera and equipment, Fig. 3, Collection Nicholas Burnett
How to Protect a Daguerreotype?

by Herman Maes, Nederlands Foto Museum, Rotterdam

To Louis Daguerre it was clear that an image could easily be damaged, simply by touching it. In his report of the ‘Chambre des députés’ from 1839, the French physicist Francois Arago compared the delicacy of the image with a ribbon of lace and the wings of a butterfly. For him this was even an obstacle in the further distribution of the invention of Daguerre. For that reason, Arago forwarded a request to Mr. Dumas to solve this problem. Dumas proposed to protect the surface of the daguerreotype with a varnish, a boiling solution of one part dextrin into five parts of water. This protective layer could easily be removed by immersing the plate in boiling water. Daguerre himself had some clear ideas on how to protect a daguerreotype. He proposed to keep the plate behind glass, fix it and make it thus inalterable for sunlight. When you took the image on a journey, he advised to keep the daguerreotype in a box with a strip of paper on the joints.

Although gold toning improved the stability of the surface, the image was still very sensitive to physical and mechanical damage. In a short time, the unprotected silver surface would be covered by a tarnished layer. This layer would gradually blur the image. That is why we normally find a processed daguerreotype plate in a special protective housing. These housings are considered to be an integral part of the daguerreotype.

Confusing

The label ‘daguerreotype’ is often used to describe the typical style of the protective housing, not the plate. That is understandable, because these housings were also used for other photographs such as wet collodion positives and even prints on paper. Soon after the introduction of the wet collodion process, negatives were presented as positives, first on glass (ambrotype), leather and textile (pannotype) and later on lacquered plates (tintype, ferrotype). This practice added firmly to the confusion. Photographers benefited from this confusion keeping the labels ambiguous. What did they mean by ‘Daguerréotype sur papier’, prints made after daguerreotypes, prints from daguerreotypes or paper photographs that were mounted in a nice housing?

Competitor

Nevertheless, the wet collodion positive was a strong competitor for the daguerreotype. It was cheaper and less time-consuming to produce a wet collodion positive. Gradually, the daguerreotypists shifted to this new technique, although many of them believed that the daguerreotype was the ‘real thing’.

Business

Photography became a serious business. The number of photographers increased and the market for daguerreotypes was reduced. Special offers to attract a clientele became a daily practice, although quality was not always guaranteed. In the 1840’s, having a daguerreotype portrait was a privilege, an exclusive and precious jewel. From the 1850’s on, when other types of photography flourished, the price of a daguerreotype portrait decreased to a more acceptable level.

Technique or Taste?

If you visited a studio in the 1850’s to make a portrait to enhance your social status, the photographer offered you a wide choice of techniques. It would be difficult for you to make a distinction between a well-made ambrotype and a daguerreotype. Especially if it was mounted in a similar decorative housing. You might prefer the more easily readable ambrotype. The ambrotype was darker and face and skin looked more natural. Unless you were seduced by the sharpness and brilliancy of the daguerreotype. You would probably following your taste, rather than choosing a technique. Whatever technique you would choose, the portrait looked more or less the same to you and you were sure to buy something fashionable.

To be continued
CALL FOR PAPERS

We are now accepting submission for the next issue

Send your proposal to daguerreotype.journal@gmail.com

Deadline: July 15th